Compression effects on color and texture based multimedia indexing and retrieval

IEEE trans Image Processing, ICIP 2003 proceedings

D-E. Guldogan, O. Guldogan, S. Kiranyaz, K. Caglar and M. Gabbou

Yuanyuan Yue

Content

- Background and Motivation
- Content-Based Image Retrieval
- **MUVIS-**Multimedia Browsing, Indexing and Retrieval System
- Experiments and Results
- Conclusion and Interpretation

Background and Motivation

- Lager size of digital visual information
- Digital compression and multimedia indexing and retrieval
- Lossy compression cause crucial information loss
 - degrade the results of multimedia retrieval
- Data loss causes a filtering effect on the visual attributes
 - enhance the retrieval performance

How is the real effect of data compression on image and video retrieval?

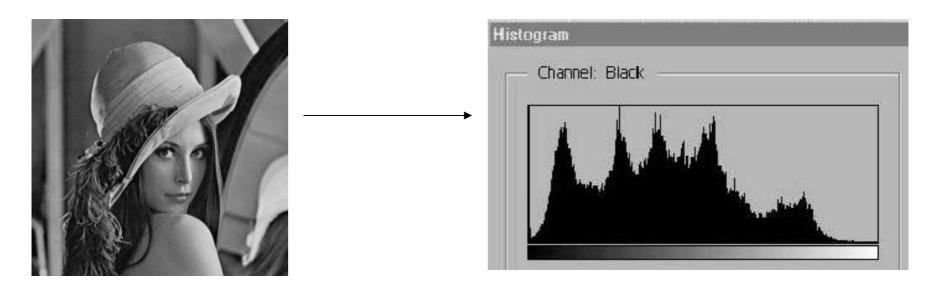
Content-Based Image Retrieval

- Images have rich content.
- This content can be extracted as various content features:
 - Mean color , Color Histogram etc...
- Take the responsibility of forming the query away from the user.
- Each image will now be described by its own features.

CBIR – A sample search query

- User wants to search for, say, many rose images
 - He submits an existing rose picture as query.
 He submits his own sketch of rose as query.
- The system will extract image features for
 - this query.
- It will compare these features with that of other images in a database.
- Relevant results will be displayed to the user.

Feature Extraction


- What are image features?
- Primitive features
 - Mean color (RGB)
 - Color Histogram
- Semantic features
 - Color Layout, texture etc...
- Domain specific features
 - Face recognition, fingerprint matching etc...

General features

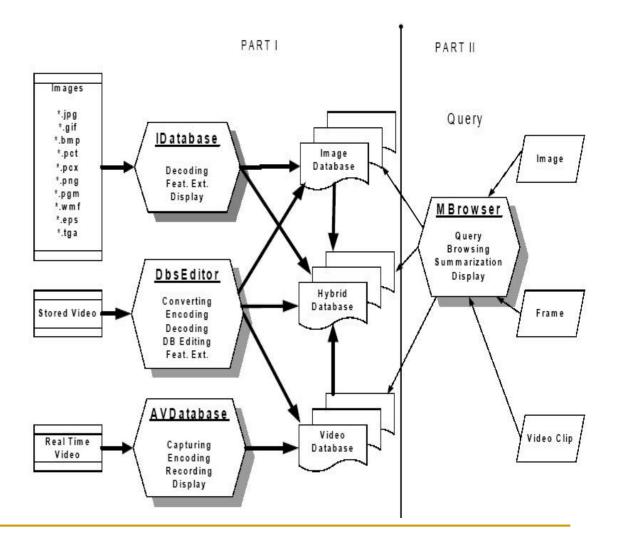
Image

- Frequency count of each individual color
- Most commonly used color feature representation

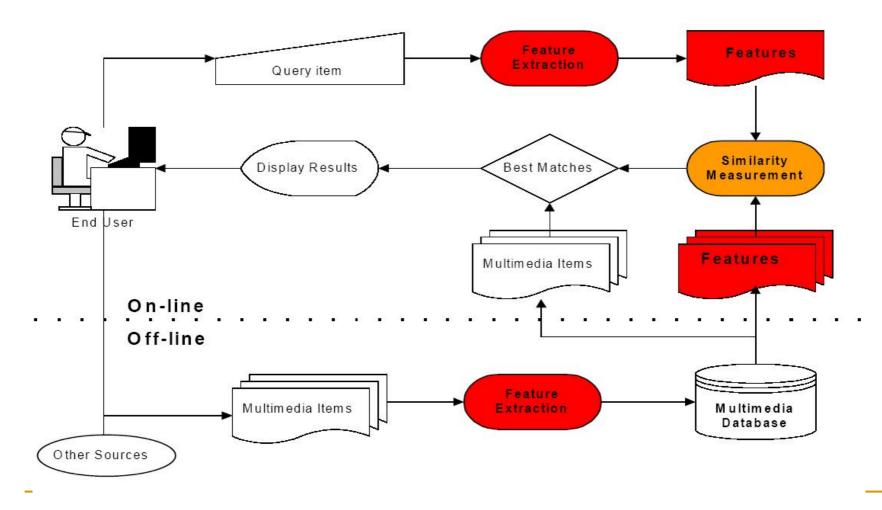
Texture

- Texture innate property of all surfaces
 - Clouds, trees, bricks, hair etc...
- Refers to visual patterns of homogeneity
- Does not result from presence of single color
- Most accepted classification of textures based on psychology studies – Tamura representation
 - Coarseness
- Linelikeness

• Contrast


• Regularity

Roughness


Directionality

MUVIS- Multimedia Browsing, Indexing and Retrieval System

- MUVIS supports contentbased video (with audio) and image indexing and retrieval
- 3 types of databases
 - Video Database –vdbs: Containing video clips, keyframes and associated feature information
 - Image Database –idbs: Containing images and associated feature information
 - Hybrid Database –hdbs: Containing video clips, keyframes, images and associated feature information

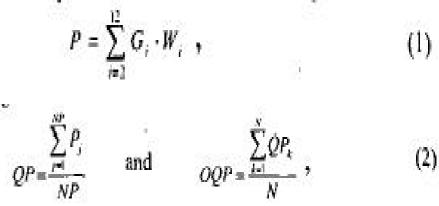
MUVIS

Example of MUVIS

A Milrower

File Display Functions View Help

- IDI XI


Ground Truth Method

A group of 10 people who does not have any expertise on image/video processing or multimedia retrieval evaluated the retrieval performances from each query in each experimental case.

Grade	Subjective Meaning				
0	No similarity / Not related				
	Slightly related				
2	Related				
3	Similar				
4	Fairly similar				
5	Same / Almost identical				

Table 1: The subjective meanings of the evaluation grades

Rank	2	3	4	5	6	7	8	9	10	11	12
Grade	5	3	4	0	3	2	1	1	1	2	3

P: Performance Value QP: Query Performance Value OQP: Overall Query Performance Value

Experiment I: Color-based image retrieval

Dataset:

- Base Image database: 1594 uncompressed color images with various sizes and color bit depths
- 7 compressed databases whose images are JPEG compressed with a unique compression ratio
- Uncompressed image database get the best performance
- Image retrieval based on HSV color histogram performs better than retrieval based on YUV color histogram in the uncompressed domain, and vice versa in the compressed domain.

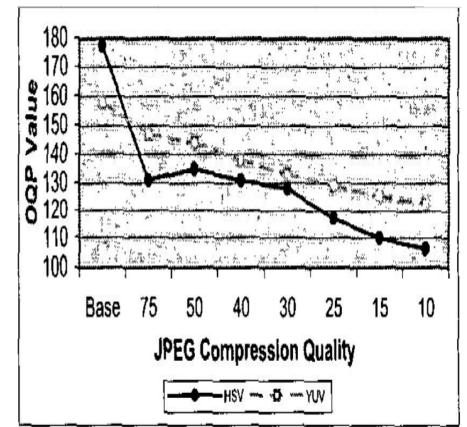


Figure 2: Image retrieval performance based on color histogram

Experiment II: Color-based video retrieval

Dataset:

- Base Video Database: 300 video clips in AVI format
- Two compressed databases, one is compressed by MPEG-4 and the other is compressed by H.263+
- Video retrieval based on HSV and YUV color histogram in MPEG-4 compressed databases performs better compared to H.263+ compressed databases
- Retrieval performance from H.263+ compressed database at lower bit rates is more stable

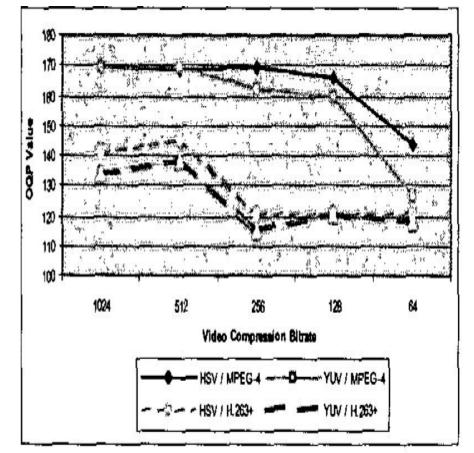


Figure 3: Video retrieval performance via color histogram

Experiment III: Texuture-based video retrieval

- Datasets:
 - Texture Image Database: 1512 uncompressed gray-scale images with 166*166 pixels
 - 7 compressed databases whose images are JPEG compressed with a unique compression ratio
- Image retrieval based on texture features gives more robust performance results than retrieval based on color features
- Using Gray level co-occurrence matrix feature extraction technique gives higher image retrieval performance than using Gabor wavelet transform

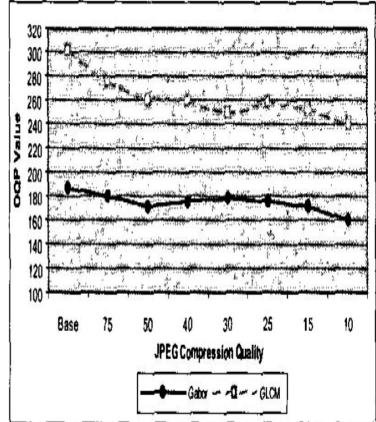


Figure 4: Image retrieval performance via texture features

Conclusion and Interpretation

JPEG effect on color domain

 JPEG encoding works on YUV color domain, and any non-linear transformation into any other color domain such as HSV may cause severe degradations (such as saturation, loss of resolution, etc.) on the color information

JPEG effect on texture features

 The reason of robustness can be insignificant texture information loss due to degration in color domain caused by JPEG compression

MPEG-4 and H.263+ effect on video

 Practically the compression may change the key-frame selection of the video sequence and this change could affect the retrieval result